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Time-dependent normal form Hamiltonian for dynamical
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Department of Mechanics, Royal Institute of Technology, S-100 44 Stockholm, Sweden

Received 11 October 1995, in final form 10 January 1996

Abstract. A new time-dependent normal-form procedure for dynamical equilibria (undergoing
parametric excitation) of one-dimensional (1D) Hamiltonian systems is developed with the
method of Lie transforms. The expansion is based on the Lewis invariant for the linearized
motion. The time-dependent Hamiltonian normal form reduces smoothly to the usual
representation in the autonomous limit. Illustrative examples of the formalism are focused
on time-periodic systems and the dynamics of Hamiltonian switching.

1. Introduction

Autonomous and time-periodic equilibria can be analysed by very similar mathematical
tools. This fact is due to Floquet theory for the linearized time-periodic systems, which
provides a transformation to an autonomous set of equations [1]. As a consequence,
time-periodic Hamiltonian equilibria can be reduced to autonomous normal forms for each
stability type.

In this paper we outline an alternative time-dependent normal-form theory, which
applies to autonomous, time-periodic, and more general time-dependent equilibria. The
development of the canonical formalism relies on the Lewis invariant [2], rather than the
less general Floquet theorem (which applies only to time-periodic equilibria). The basic
ideas for the first-order normal form of this kind were presented in a study of time-periodic
1D Hamiltonian equilibria and their semiclassical quantization [3, 4]. We also focus on
linearly stable equilibria in this paper, however primarily their higher-order normal form.
To exemplify the new type of freedom introduced by the formalism we discuss briefly
an application to (time-dependent) Hamiltonian switching (see e.g. adiabatic switching [5],
microwave ionization of hydrogen [6]).

The explicit form of the time-dependent 1D Hamiltonian is given by

H(p, q, t) = h0(t) + 1
2p2 + 1

2h2(t)q
2 + 1

3h3(t)q
3 + 1

4h4(t)q
4 + · · · (1)

whereh0(t) andhn(t), n = 2, 3, . . . are quite arbitrary functions of time. This Hamiltonian
with periodic coefficients is typically obtained in the narrow-tube analysis (see [3, 4]), where
the coefficients appear periodic due to the underlying periodic centre motion.

We argue in this paper that the Hamiltonian (1) can be reduced to a truncated time-
dependent normal form

KTD(Ln, t) = η0(t) + η1(t)Ln + η2(t)L2
n + η3(t)L3

n + · · · + ηn(t)Ln
n (2)

by applying Lie transforms. In this form of the Hamiltonian,Ln is an ‘approximate’ Lewis
invariant corresponding to a suitable ordern of the canonical expansion. In general, as
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3708 K-E Thylwe and H Dankowicz

n → ∞, the expansion is expected to be divergent (see the discussion by Wood and Ali
[7]). The asymptotic nature is typical also for normal forms of static equilibria. Analysis
of the dynamics of the normal form Hamiltonian yields (at least) a qualitative picture of
the flows. We recall that the idea of successive canonical transformations to simplify the
analysis of a complicated system is the basis of the KAM theory of quasiperiodic motion.

Given the truncated Hamiltonian (2) with periodic coefficientsηn(t + T ) = ηn(t), we
may think of the dynamics as motion on a time-periodic tube with constant actionLn and
instantaneous angular velocity

φ̇(Ln, t) = η1(t) + 2η2(t)Ln + 3η3(t)L2
n + · · · + nηn(t)Ln−1

n . (3)

From this expression we can directly obtain the characteristic rotation angles in the period
map. In the limitLn → 0, the winding becomes independent of the action and relates in
an exact way to the Floquet exponents of the linearized motion.

For each order of approximation the approximate Hamiltonian also predicts a set of
‘level lines’, defined by

Ln(p, q, t = constant) = Ln (4)

which, for a given value ofLn, gives one or more time-dependent closed lines in the two-
dimensional phase space. Time-periodic systems can be studied by the period map in which
(4) reduces to a polynomial equation of degree 2n in p andq, with constant coefficients.

There are some new implications from this normal form expansion. We might, for
example, consider quite arbitrary time variations in the Hamiltonian. Specific switching
mechanisms can be of interest, as in microwave excitation of Rydberg states [6]. Section 2
deals with the Lewis-invariant representation which is fundamental for the success of the
subsequent transformations of the Hamiltonian. In section 3 we outline the arbitrary-order,
canonical Lie transformation and discuss some explicit low-order normal-form expressions.
By simple examples we illustrate realistic behaviours of key quantities of the theory. We
discuss invariance properties of the normal form transformation as well as the study of
quasi-energies in periodic systems in section 4. Conclusions are given in section 5.

2. Lewis-invariant representation

The normalization procedure presented here generalizes significantly the one typically used
in deriving Birkhoff’s normal form (Arnold [1], Ozorio de Almeida [8]). For the leading
(harmonic) order the present procedure is outlined in [4]. This corresponds to the present
section. For the cubic and quartic orders we proceed to give some explicit formulae in
section 3.

To put the quadratic part of the Hamiltonian in a suitable form, we introduce the Lewis
invariant (see [9], and more recent comments in Lichtenberg and Lieberman [2]):

L1 = 1
2[(pρ(t) − qρ̇(t))2/3d + 3d(q/ρ(t))2]. (5)

The Lewis invariant is a non-trivial combination of the canonical variablesp, q, andρ(t),
whereρ(t) is a particular solution of the auxiliary Milne equation [10]

ρ̈ + h2(t)ρ = 32
d

ρ3
(6)

closely related to the quadratic part of the basic Hamiltonian (1). Equation (6) can be
seen as the radial part of the plane-polar components of Newton’s second law for a planar
mass–spring system having a time-dependent coefficient. The non-uniqueness of the Lewis
invariant (discussed in [4]) requires that a particular Milne solution be selected. A general
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Milne solution can be expressed in terms of fundamental solutions to the linear equation
q̈ +h2(t) q = 0 (see sections 1.5 and 1.6 in [11], with the identificationsq(t) = ρ−2(t) and
3 = 1). We consider here solutions that are initially normalized and stationary, satisfying
the initial conditions (see Thylwe and Bensch [4]):

ρ(0) = 1 ρ̇(0) = 0. (7)

The particular solution is then found by varying the angular momentum parameter3 (in
analogy with polar decompositions for planar central motion problems) until, for a particular
value3 = 3d, the Milne solution satisfies some further ‘dynamical criterion’, a stationarity
condition in this presentation. A typical situation is to preserve the (exact) time-periodic
symmetry of Hamiltonians that are time periodic. Then, by a proper choice of the initial
time, 3 = 3d selects a unique periodic solutionρp(t) [4] which returns to its initial
turning point (7). For time-switching Hamiltonians,3 = 3d selects a unique solution that
switches between two different ‘almost constant limits’. The existence of a ‘dynamical
Milne solution’ for real-valued parameters3d is intimately related to the linear stability of
the equilibrium and we shall assume that this is the case. A guiding selection principle for
more general cases than those considered in the present paper is to modifyρ̇(0) for the
normalized Milne solution to keep it as smooth as possible. This will simplify the time
dependence of higher-order terms as well.

We adopt the Lewis invariant transformation based on such a ‘dynamical Milne solution’:

(q, p) → (Q, P ) =
(√

3dq

ρ(t)
,
pρ(t) − qρ̇(t)√

3d

)
(8)

and the corresponding time-dependent generating function

S(P, q, t) =
√

3d

ρ(t)
Pq + ρ̇(t)q2

2ρ(t)
. (9)

The transformed HamiltonianK(P, Q, t) then becomes

K(P, Q, t) = η0(t) + 1
2η1(t)

(
P 2 + Q2

)
+ 1

3h3(t)ρ
3(t)3

−3/2
d Q3 + 1

4h4(t)ρ
4(t)3−2

d Q4 + · · · (10)

where

η0(t) = h0(t) η1(t) = 3d

ρ2(t)
. (11)

In equation (10) new coefficient functions replace the original oneshn(t), n = 1, 2, . . ..
We also recognize the Lewis invariant,L1 = (P 2 + Q2)/2, for the quadratic part of the
Hamiltonian (the reader may confirm thatL̇1 = 0 for the quadratic part of the Hamiltonian
K(P, Q, t)) and thath2(t) is no longer explicitly present. Unfortunately, the higher-order
terms are not constants of motion, expressible in terms of the Lewis invariant alone. To
handle these we subsequently adopt the complexification (see Arnold [1]) of the Hamiltonian
in section 3.

In passing, we notice a particular subclass of nonlinear dynamical equilibria, which are
subject to exact integrability (see Kaushal and Korsch [12] and Lewis and Leach [13]).
Suppose that the higher-order coefficientshn(t) in equation (10) are given by

hn(t) = cn

(
3d

ρ2(t)

)n/2+1

n > 3 (12)
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with constantscn and the same Milne solution as before. Then all terms of order 2 and
higher in the Hamiltonian appear synchronized:

K(P, Q, t) = η0(t) + 1

2
η1(t)

(
P 2 + Q2 + 2c3

3
Q3 + 2c4

4
Q4 + · · ·

)
. (13)

Here the expression in the large brackets is anexactconstant of motion, while the Lewis
invariantL1 = (P 2 + Q2)/2 is so only for the linearized motion. This peculiar model will
not be reported on any further in the present paper.

Figure 1. Illustration of the true (——) and adiabatic(— · —) time-periodic behaviour of the
leading normal-form coefficientη1(t) when a system parameterA is varied (see example 1).
The true curve oscillates about the adiabatic one, and the number of these oscillations changes
by one at resonance.

2.1. Adiabatic approximation

The adiabatic limit consists of an approximate Milne solutionρ(t), obtained by assuming
that it varies slowly. Hence, simply neglecting the time derivative in Milne’s equation we
find the leading-order expression

ρa(t) = [32
d/h2(t)]

1/4. (14)

This means, in particular, that the first non-trivial normal-form coefficientη1(t) becomes

η1(t) ≈
√

h2(t). (15)

In the following numerical examples we frequently observe that the adiabatic approximation
shows smoother behaviour for the coefficientη1(t) than the exact one. Note that the
primitive adiabatic approximation fails in cases where the coefficienth2(t) changes sign.

Example 1. Periodic coefficientη1(t). As an illustration we consider the modelh2(t) =
A + r cost for the quadratic part of the Hamiltonian (1), for a series of parameter values
A = 0.5, 0.6, . . . , 0.9, 1.1, 1.2, . . . , 1.5 andr = 0.3. In figure 1 we plot the numerically
calculated coefficientη1(t) = 3d/ρ

2(t) (full curve) of the transformed quadratic term in
(10) and compare it with its adiabatic expression

√
h2(t) (chain curve). The exact coefficient
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performs oscillations about the adiabatic approximation. At resonance, nearA = 1 where no
periodic Milne solution was found, the number of superimposed non-adiabatic oscillations
is changed by one. The amplitudes of these oscillations are smaller for larger values ofA.

Example 2. Switching coefficientη1(t). Here we consider the finite-time switching model
h2(t) = A + r(t − sin(t))/(2π), 0 6 t 6 2π . In figure 2 we plotη1(t) = 3d/ρ

2(t) (full
curve) and its adiabatic approximation (chain curve) for a sequence of parameters given by
A = 1, r = 0.1, 0.3, . . . , 1.1, 1.5, 1.7, . . . , 2.1. In contrast to the adiabatic ones, the exact
coefficientsη1(t) generally show a non-monotonic behaviour during the switching process
due to non-adiabatic effects. A strong non-adiabatic resonance effect in the parameter range
1.2 6 r 6 1.4 is clearly visible.

Figure 2. Illustration of the true (——) and adiabatic(−·−·) switching behaviour of the leading
normal-form coefficientη1(t) when a system parameterr is varied (see example 2). Again the
true curve oscillates about the adiabatic one and resonances may occur.

3. Complexification and Lie transforms

To simplify the higher-order terms we now complexify the Hamiltonian (10) by introducing
the momentumz = P + iQ and its conjugate variablez∗ = P − iQ (cf [1]). The resulting
Hamiltonian is

Kc(z, z∗, t) = −2iK(P (z, z∗), Q(z, z∗), t) (16)

so that

Kc(z, z∗, t) = −2iη0(t) − iη1(t)zz
∗ − 2ib3(t)

(− 1
2i

)3
(z − z∗)3

−2ib4(t)
(− 1

2i
)4 (

z − z∗)4 − · · · . (17)

Here we have simplified the notation for the coefficient functions in the Hamiltonian (10)
by introducing

bn(t) = 1

n
hn(t)ρ

n(t)3
−n/2
d n = 3, 4, . . . . (18)
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The reader may confirm thatz and z∗ satisfy the canonical equations for the
HamiltonianKc(z, z∗, t), if P andQ are canonical variables for the HamiltonianK(P, Q, t).
Furthermore, for real physical variables,z andz∗ stay complex conjugates andKc(z, z∗, t)
is always imaginary.

For later ease of notation, we writeKc as

Kc = Kc
0 + Kc

1 + Kc
2 + Kc

3 + · · · (19)

whereKc
0 is the quadratic part of the Hamiltonian andKc

n are monomials of degreen + 2.
In particular, the subsequent manipulations will leaveKc

0 unchanged.
We will now seek a canonical transformation, so as to eliminate as many terms as

possible in the new HamiltonianKc. For this purpose we turn to the method of Lie
transforms. In particular, we seek a functionw(z, z∗), known as theLie generating function,
which is used to generate a Hamiltonian system via the canonical equations

dZ

ds
= {Z, w} = − ∂w

∂Z∗ and
dZ∗

ds
= {Z∗, w} = ∂w

∂Z
(20)

where {·, ·} denotes the Poisson bracket with respect to(Z∗, Z), and s is a formal, real
‘evolution’ parameter for the transformation. The solution to this system withZ(s = 0) = z

and Z∗(s = 0) = z∗ constitutes a canonical transformation for every value ofs. Because
of the complex symmetry of the canonical variables in (20), we have

w∗ = −w (21)

which in turn means thatw is imaginary. For further details we refer the reader to
Lichtenberg and Lieberman [2] and a more tutorial presentation by Cary [14]. To proceed,
we expressw as the formal expansion series (s = 1)

w =
∞∑

n=1

wn (22)

wherewn are sums of monomials of degreen + 2, i.e

wn =
∑

k+l=n+2

aklz
kz∗l (23)

with time-dependent coefficientsakl to be determined in the transformation process. For
notational simplicity we define the operators

Ln = {wn, } (24)

Tn = −1

n

n−1∑
m=0

TmLn−m (25)

T −1
n = 1

n

n−1∑
m=0

Ln−mT −1
m (26)

where T0 = 1 and T −1
0 = 1. The canonical transformation obtainable through formal

expansion of equation (20) is now given by

z =
∞∑

n=0

T −1
n Z and z∗ =

∞∑
n=0

T −1
n Z∗ (27)

and, similarly,

Z =
∞∑

n=0

Tnz and Z∗ =
∞∑

n=0

Tnz
∗. (28)
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Following [14], the classical (mixed variable) relationK = H + ∂F/∂t , whereF is a
generating function, is now replaced (in expanded form) by the fundamental transformation
equation

∂

∂t
wn + {wn, K

c
0} = nKc

n −
[
nKc

n +
n−1∑
m=1

(Ln−mKc
m + mT −1

n−mKc
m)

]
(29)

which can be used to find the necessary transformation from the original HamiltonianKc

and the desired form of the transformed HamiltonianKc. It is assumed here thatKc
0 = Kc

0.
For eachn we seekwn which satisfy equation (29) whereKc

n contains as few non-vanishing
terms as possible.

Let us for the moment assume thatKc
n = 0, n > 0. Since equation (29) is a sum of

monomials of degreen+2 in the dummy variablesz andz∗ (cf Lichtenberg and Lieberman
[2]) the known time-dependent coefficients on the right-hand side may collectively be written
as 2ifkl(t), k+l = n+2. We then find the following differential equations for the coefficients
akl :

ȧkl − iη1(t)(l − k)akl = 2ifkl(t). (30)

These can formally be solved to yield

akl(t)=
[
akl(0) + 2i

∫ t

0
fkl(s) exp

[
− i(l − k)

∫ s

0
η1(x) dx

]
ds

]
exp

[
i(l − k)

∫ t

0
η1(s) ds

]
.

(31)

For a large class of bounded functionsfkl(t) and η1(t) we expect (but we have no proof
of this statement) bounded solutions of equation (30) as long asl 6= k. In particular,
for periodic coefficients, the existence of periodic solutions is given by the sufficient non-
resonance condition∫ T

0
η1(t) dt 6= 2πj

l − k
(32)

for all integersj , k and l 6= k, such thatk + l = n + 2. This is realized by equating the
expression forakl(T ), using (31), with the initial valueakl(0) and then algebraically solving
for akl(0).

In the general case whenl = k there is no guarantee that a bound solution can be found
(unlessfkk(t) = 0). It is then convenient, but by no means necessary, to setakk = 0 in
the Lie generating function, in which case the left-hand side of (30) vanishes. Instead we
have to admit a non-vanishing diagonal term in the HamiltonianKc

n that cancels the existing
diagonal terms (2ifkk(t)) in the right-hand member of the fundamental equation (29). In
fact, in the case of periodic coefficients, it is still possible to eliminate all oscillating parts
of fkk by a coefficient functionakk(t) that does not vanish.

In summary, all non-diagonal terms in the expression forKc
n can be eliminated in the

transformed Hamiltonian. For the diagonal cases, we obtain the expression

Kc
n = −2i(fkk(t)/n)ZkZ∗k n = 2k − 2. (33)

As previously noted, this expression can be modified somewhat in specific situations.
From the above, we immediately conclude that all monomials of odd degree can be

eliminated from the Hamiltonian, since they contain no diagonal terms. Thus, with a new
indexm = (n−2)/2 labelling the remaining terms, the general truncated expression for the
transformed Hamiltonian is

Kc(Z, Z∗, t) = −2i
M∑

m=0

ηm(t)

(
ZZ∗

2

)m

. (34)
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The coefficientsηm(t) contain the corresponding diagonal terms of the original
Hamiltonian and ‘previously determined’ coefficients of the generating function.

3.1. Cubic terms

For n = 1, the right-hand side of equation (29) contains only the cubic terms of the
original Hamiltonian (17) with opposite sign. Hence, we obtain the corresponding monomial
coefficients

f3−l,l(t) = b3(t)

(
− i

2

)3 (
3
l

)
(−1)l . (35)

This expression can be substituted into equation (31) to yield explicit solutions for the
transformation coefficients. This implies that all terms inKc

1 can consistently be set to zero.
Note also the specific symmetryf3−l,l(t) = f ∗

l,3−l(t), which from equation (30) is consistent
with the symmetry

a3−l,l = −a∗
l,3−l (36)

for the transformation coefficients (see also equation (21)).

3.2. Quartic terms

Similarly, for n = 2, equation (29) becomes

∂

∂t
w2 + {w2, K

c
0} = 2Kc

2 − [2Kc
2 + {w1, K

c
1}] (37)

where the left-hand sides of this equation and that of (30) look identical for each monomial
(herek = 4 − l).

Using the terms on the right-hand side of (37) which are known at this stage, i.e.

Kc
1 = −2ib3(t)

(− 1
2i

)3
(z − z∗)3 (38)

Kc
2 = −2ib4(t)

(− 1
2i

)4
(z − z∗)4 (39)

and

w1 =
3∑

l=0

a3−l,lz
3−lz∗l (40)

we identify monomials from the equation

2i
4∑

l=0

f4−l,lz
4−lz∗l = 1

4ib4(z − z∗)4 − 3
4b3(z − z∗)2((a21 + 3a30)z

2

+2(a12 + a21)zz
∗ + (3a03 + a12)z

∗2). (41)

The symmetry for the cubic coefficients again supports the symmetriesf4−l,l = f ∗
l,4−l and

a4−l,l = −a∗
l,4−l in (30). Hence, for off-diagonal terms we need to solve only two equations,

e.g.,

ȧ40 + 4iη1(t) a40 = 1
4ib4 − 1

4b3(9a30 + 3a12) (42)

and

ȧ31 + 2iη1(t) a31 = −ib4 + 1
2b3(9a30 − 3a12). (43)
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For the diagonal terms we puta22 = 0 and cancel the right-hand side of (37) by the aid of
(33). This leaves us with a contribution to the transformed Hamiltonian

Kc
2 = −i 3

4

(
b4(t) + 3

2ib3(t)[(a30 + a03) − (a21 + a12)]
)
(ZZ∗)2. (44)

With reference to the final expression for the transformed Hamiltonian, we are now able
to read off the relevant coefficientη2(t). A final use of the complex symmetry (36) yields

η2(t) = 3
2b4(t) − 9

2b3(t)(Im a03 − Im a12). (45)

This expression for the coefficientη2(t) indicates a significant contribution from the cubic
terms of the original Hamiltonian that has not previously been taken into account in the
narrow-tube quantization of time-periodic systems [3].

We again remark that, in the case of time-periodic coefficients, the oscillating part of
the right-hand side of equation (44) can be eliminated, andη2 then equals the average of
the right-hand side. This procedure can be carried over to all even polynomial orders with
the result thatηm =constant for allm > 1 in equation (34).

Figure 3. Illustration of the time-periodic behaviour of the large and small (complex) coefficient
functionsa31(t) anda40(t), respectively, for the model considered in example 3. The true (——)
and adiabatic(— · —) behaviour are compared. Note that the adiabatic approximation is real
valued, whilst the true value of the coefficient has an imaginary component (- - - -).

3.3. Adiabatic approximations

An interesting point is to consider the adiabatic approximations of equation (30). They are
indeed of the same type as the coefficientsη0(t) andb3(t) and easy to calculate.

The time-dependent coefficientsakl of w1 andw2 allow the adiabatic approximations

a3−k,k(t) = −i
(−1)k

4(2k − 3)

(
3
k

)
b3(t)

η1(t)
(46)

and

a4−l,l(t) = (−1)l

2(4 − 2l)

(
4
l

)
b4(t)

η1(t)
+ F(w1, H1, η1) for l 6= 2 (47)
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provided (̇a(t)/a(t) � 1). The non-homogeneity termF is linear in the coefficients ofw1.
The validity of the adiabatic approximation for thea-functions is briefly considered in

the numerical examples.

Example 3. Periodic case. We extend the quadratic periodic model (see example 1)
h2(t) = A + r cost , with A = 1.2, r = 0.3, to includeh4(t) = 1 (constant) in the
Hamiltonian (1). Hence, this model does not have any cubic terms. Four periodic off-
diagonala-coefficients can be determined (l = 0, 1, 3, 4), but the last two are related to
the first two by the symmetrya4−l,l = −a∗

l,4−l . The upper part of figure 3 shows the real
(full curve) and imaginary (broken curve) parts ofa31(t) together with the (real) adiabatic
approximation (chain curve). The lower part shows the same quantities for the smaller
a40(t). The adiabatic approximation seems to be poor for the larger coefficient function
a31(t).

Figure 4. Illustration of the (complex) coefficient functionsa31(t) and a40(t) and their (real-
valued) adiabatic approximations for the switching model considered in example 4. The curves
are identified as in figure 3.

Example 4. Switching case. We extend the quadratic model in example 2 withA = 1, r =
2 to includeh4(t) = 1 (constant). Two off-diagonal (and non-zero)a-coefficients are to be
determined (l = 0, 1). The criterion (for this example) is that no imaginary parts exist at
the endpoints (since the adiabatic solution is real): this corresponds to stationary absolute
value of the complexa’s, which can be derived from the differential equations (30) for the
a’s. One can show that

˙[|akl|2] = 2 Re(2ifkl(t)a
∗
kl) (48)

and the inhomogeneity, shortly denoted 2ifkl(t) as in (30), is always imaginary in our
example. The solutions which are real and stationary (in the above sense) at the endpoints are
found withρ(0) = 1.017 86,a31(0) = −0.128 17,a31(T ) = −0.023 44,a40(0) = 0.018 332,
anda31(T ) = 0.003 17. The top part of figure 4 shows the real (full curve) and imaginary
(broken curve) parts ofa31(t) together with the (real) adiabatic approximation (chain curve).
The bottom part of the figure shows the same quantities fora40(t).
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4. Time-dependent normal form

4.1. Invariant properties

While the primary purpose of the normal form transformation is to obtain an integrable,
albeit time-dependent, truncated Hamiltonian, it is in some cases of interest to preserve
certain symmetries or characteristic behaviour of the coefficients of the Hamiltonian. For
example, we have already argued that in the case of time-periodic coefficients a normal form
transformation can be found which preserves this property. Consequently, the techniques
appropriate to the study of time-periodic systems are still applicable to the transformed
Hamiltonian.

Along the same lines is the possibility of preserving invariance under time reversal.
Thus, assuming thathn(−t) = hn(t) for all n, it follows that a symmetric solution can be
found to the Milne equation by requirinġρ(0) = 0. Hence, the same is true ofη1(t), as
well as thebn’s.

Now consider the evolution equations for the transformation coefficients, equation (30).
It is easy to show that if the right-hand side is invariant under the composition of
time reversal and complex conjugation, then it is possible to find a solution satisfying
akl(−t) = −a∗

kl(t). Similarly, if the right-hand side changes sign under the above operations,
solutions satisfyingakl(−t) = a∗

kl(t) can be found. We assume that these solutions are
chosen for the normal form transformation.

Using equation (29) and the definitions of the operatorsLi andT −1
i one can show that

for k + l = odd, the right-hand side remains invariant, while fork + l = even it changes
sign. The proof is one of induction, noting from equation (35) that the right-hand side is
real for k + l = 3. Hence, for all orders we haveakl(−t) = (−1)k+la∗

kl(t).
To show that the transformed Hamiltonian respects the time reversal symmetry, we

recognize that only the diagonal terms in the bracketed expression in equation (29) are
retained. It is easy to show that the first term is invariant under time reversal. Further,
the first term in the sum can be shown to result in no diagonal terms. We now write the
second term in the sum asg(akl(t), t), where we omit the dependence onz and z∗. g is
clearly symmetric in the second argument. We will now use the symmetry of the previous
paragraph and that implied by equation (21) (akl = −a∗

lk). One can then show that

g(akl(−t), −t) = g((−1)k+la∗
kl(t), t) = g((−1)k+l+1alk(t), t).

Again, using induction, it is easy to show that the substitution implied by the last expression
is equivalent to the substitutionz ↔ z∗ in the original expression. However, since the
diagonal terms are unaffected by this latter substitution, they are similarly invariant under
time reversal, thus proving our assertion.

We finally note that for other characteristic time dependences, such as the finite-time
switching considered in the examples, it is possible that the properties can be preserved in
some general sense. However, for finite-time studies, such invariance properties may not be
of central concern, since the integrability of the transformed Hamiltonian is the fundamental
aim of the analysis.

4.2. The Lewis-invariant formulation

We now return to the Lewis invariant representation. In terms of a particular new Lewis
invariant 2LM = ZZ∗, consistent with the order of approximation, we can express the
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HamiltonianKTD = Kc/(−2i) as follows:

KTD =
M∑

m=0

ηm(t)Lm
M. (49)

Figure 5. Illustration of the two periodic coefficient functionsη1(t) and η2(t) (——) and
their adiabatic approximations (—· —) remaining in the normal-form Hamiltonian. The model
system is described in example 5.

Figure 6. Illustration of the two switching coefficientsη1(t) andη2(t) (——) and their adiabatic
approximations (—· —) remaining in the normal-form Hamiltonian. The model system is
described in example 5.
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It is convenient to re-introduce Cartesian variablesPM and QM , corresponding to the
invariantLM , through

PM = (Z + Z∗)/2 QM = (Z − Z∗)/(2i) (50)

so that

LM = (P2
M + Q2

M)/2. (51)

With these variables the level lines of constantLM are always plain circles.

Example 5. Periodic and switching cases. With the same quartic models of the Hamiltonian
(1) as earlier in examples 3 and 4 we study the magnitudes of the remaining diagonal normal-
form coefficients. In figures 5 and 6, bothη1(t) andη2(t) are calculated in two ways: with
the exact Milne solution (full curve) and with the adiabatic approximation (chain curve).

4.3. Quasi-energies and level lines

Particularly for time-periodic Hamiltonian systems, and motion on periodic vortex tubes,
one can define a characteristic (quasi-) energy, which is a time-averaged value of the proper
Hamiltonian. The quasi-energy has a direct relation to quantum mechanics (see [4]). If
the Hamiltonian is of the time-periodic normal-form type the integration is straightforward.
Hence,

ε(LM) = 1

T

∫ T

0
KTD(LM, t) dt ′ (52)

implying that

ε(LM) = 〈η0〉t + 〈η1〉tLM + 〈η2〉tL2
M + · · · . (53)

Quantum mechanically, of course, the constant of motionLM is quantized and has to be
labelled by a quantum number (note thatM is related to the order of transformation—not a
quantum number), as it represents the autonomous harmonic oscillator energy in(RM, SM)

phase space.
We mentioned earlier that the level lines corresponding to a sequence of invariantsLM

are plain circles of radii
√

2LM in the transformed phase space. It is also interesting, but
tedious, to study the level lines in the original phase space. Not only will the shapes be
different, but most importantly, they become time dependent. The canonical transformations
just guarantee the same phase space area, 2πLn, circumvented by the closed lines. If one
is not particularly interested in the time dependence of the level lines, one can study them
in a particular period map corresponding tot = 0, T , . . .. This restriction further simplifies
the reversion of the coordinate transformations ifρ̇(0) = 0.

Example 6. Quasi-energies and level lines. In order to obtain the level lines of the higher-
order invariants one has to use the transformation (28), expressing the higher-order invariant
ZZ∗/2 in terms of the lower-order onezz∗/2 and further monomials of lower order. Finally
the real canonical coordinates are substituted into the expression. For the particular quartic
model studied in the above series of examples we find the following equation for the level
lines on the initial-time surface of the section:

L2 = [
p2r6

0 + 2ar8
0p4 − 2q2r4

0cp2 + q2r2
0 + 2bq4

]
/(2r4

0) (54)
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Table 1. Analysis of phase-space level lines of the periodic model. Numerical comparison of
first and second normal-form approximations.

q(0) L1 ε1 L2 ε2

0.05 1.4486(−3) 1.5786(−3) 1.4510(−3) 1.5819(−3)
0.10 5.7942(−3) 6.3135(−3) 5.8340(−3) 6.3695(−3)
0.15 1.3037(−2) 1.4205(−2) 1.3238(−2) 1.4490(−2)
0.20 2.3177(−2) 2.5254(−2) 2.3814(−2) 2.6160(−2)
0.25 3.6214(−2) 3.9459(−2) 3.7768(−2) 4.1688(−2)
0.30 5.2148(−2) 5.6821(−2) 5.5371(−2) 6.1483(−2)
0.35 7.0979(−2) 7.7340(−2) 7.6950(−2) 8.6066(−2)

where

r0 = ρ(0)/
√

3d (55)

a = 2aR
40(0) + aR

31(0) (56)

b = 2aR
40(0) − aR

31(0) (57)

c = 12aR
40(0). (58)

To obtain (58) we have made use of index symmetries of the real and imaginary parts of
the a coefficients. Recall also thata22 = 0.

In a numerical study of level lines in the initial (t = 0, 2π, . . .) period map, we have
chosen a sequence of initial conditionsq(0) with p(0) = 0 and analysed the first and
second Lewis invariant together with the corresponding quasi-energies in the first- and
second-order normal-form approximation. The results are collected in table 1. The two sets
of approximate level lines are shown in figures 7 and 8.

Figure 7. Phase-space level lines corresponding to the first-order Lewis invariantL1. The
numerical period map of the trajectories is shown as small dots. The model is described in
example 6.
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Figure 8. Phase-space level lines for the same model as in figure 7 corresponding to the
second-order Lewis invariantL2.

5. Conclusions

We have developed the basis of a Hamiltonian normal-form approximation for dynamical
equilibria that reveals physical insights of system behaviour in between period maps and
switching processes. In a numerical study of two model systems we have observed non-
adiabatic effects of the dynamics which are typically related to a kind of ‘linear’ resonance
in canonical adiabatic theory [2].

In Hamiltonian switching processes, we also found non-adiabatic effects as well as
instabilities of the representation. In this normal form, and in its adiabatic approximation,
initial and final energies are effectively connected. In some parameter regions the non-
adiabatic effects cause the initial and final energies to shift in the same direction, thereby
maintaining an energy difference which is very similar to the one predicted by adiabaticity.
However, as we demonstrated in example 2, non-adiabatic effects can in neighbouring
parameter regions shift initial and final energies in opposite directions. One may thus
introduce ‘in-phase’ and ‘out-of phase’ regions of parameter space. These regions are
separated by a kind of non-adiabatic resonance for which the formalism breaks down.

In this presentation we have not considered any nonlinear resonance phenomena typical
for time-periodic systems. Relevant generalizations to cover uniform descriptions of
subharmonic resonances are in progress. Nor have we studied in detail the stability
conditions for the Hamiltonian switching case, or the convergence aspects of the expansion
in general.
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